AnnaBet.com
Witamy   Login   Register Zarejestruj się lub zaloguj.
Web Store    Facebook   Twitter   Napisz do Nas

Piłka nożna

Anglia Włochy Hiszpania Niemcy Francja Holandia Belgia Portugalia Szkocja Rosja
Międzynarodowe Albania Algieria Arabia Saudyjska Argentyna Armenia Australia Austria Azerbejdżan Bahrajn Białoruś Boliwia Bośnia i Hercegowina Brazylia Bułgaria Chile Chiny Chorwacja Cypr Czarnogóra Czechy Dania Egipt Ekwador Estonia Finlandia Grecja Gruzja Gwatemala Honduras Hongkong Indie Indonezja Irak Iran Irlandia Islandia Izrael Jamajka Japonia Jordania Kanada Katar Kazachstan Kenia Kolumbia Korea Południowa Kostaryka Kuwejt Litwa Łotwa Luksemburg Malezja Malta Maroko Meksyk Mołdawia Nikaragua North Ireland North Macedonia Norwegia Nowa Zelandia Paragwaj Peru Polska RPA Rumunia Salwador San Marino Serbia Singapur Słowacja Słowenia Syria Szwajcaria Szwecja Tadżykistan Tajlandia Tajwan Tanzania Tunezja Turcja Turkmenistan USA Uganda Ukraina United Arab Emirates Urugwaj Uzbekistan Walia Węgry Wenezuela Wietnam Wyspy Owcze

  Puchar Azji Wschodniej 2017 @ Japonia

# Drużyna SR W R P GF GA Diff Pts Pts/G W% ØGF ØGA
1. Tajwan 3 3 0 0 13 3 +10 9 3.00 100% 4.33 1.00
2. Mongolia 3 1 1 1 10 4 +6 4 1.33 33% 3.33 1.33
3. Makau 3 1 1 1 7 6 +1 4 1.33 33% 2.33 2.00
4. Northern Mariana Isl 3 0 0 3 2 19 -17 0 0.00 0% 0.67 6.33


Naciśnij na wybranej kolumnie w celu posortowania danych
Mouseover percentages (%) to see value odds

Wybierz Sezon


2022
2019
2017
2015
2013
2010
2008
2005
2003


Official Site

Wikipedia

Sobota 16. grudzień 2017
   
Puchar Azji Wschodniej2017 Kursy 1x2
Japonia    1 - 4    Korea Południowa2.443.012.92
Chiny    1 - 1    Korea Północna2.423.043.04
   
Wtorek 12. grudzień 2017
   
Japonia    2 - 1    Chiny1.384.477.75
Korea Północna    0 - 1    Korea Południowa5.453.551.61
   
Sobota 9. grudzień 2017
   
Japonia    1 - 0    Korea Północna1.344.677.65
Korea Południowa    2 - 2    Chiny1.623.425.63
   
Poniedziałek 14. listopad 2016
   
Puchar Azji Wschodniej - Qualification2017 Kursy 1x2
Korea Południowa W    9 - 0    Chinese Taipei W1.0126.0034.00
   
Sobota 12. listopad 2016
   
Hongkong    0 - 1    Korea Północna3.623.561.90
Tajwan    2 - 0    Guam2.303.542.68
   
środa 9. listopad 2016
   
Hongkong    4 - 2    Tajwan1.344.888.60
Guam    0 - 2    Korea Północna18.6910.281.07
   
Niedziela 6. listopad 2016
   
Hongkong    3 - 2    Guam1.176.0312.95
Korea Północna    2 - 0    Tajwan1.175.8612.65
   
Poniedziałek 4. lipiec 2016
   
Puchar Azji Wschodniej - Qualification Group2017 Kursy 1x2
Tajwan    3 - 2    Makau
Northern Mariana Island    0 - 8    Mongolia
   
Sobota 2. lipiec 2016
   
Mongolia    0 - 2    Tajwan
Northern Mariana Island    1 - 3    Makau
   
Czwartek 30. czerwiec 2016
   
Tajwan    8 - 1    Northern Mariana Island
Makau    2 - 2    Mongolia

Więcej Wyników


grudzień 2017
listopad 2016
lipiec 2016
czerwiec 2016

Chinese Taipei W
Chiny
Guam
Hongkong
Japonia
Korea Północna
Korea Południowa
Korea Południowa W
Makau
Mongolia
Northern Mariana I
Tajwan


Wybierz Sezon


2022
2019
2017
2015
2013
2010
2008
2005
2003


Official Site

Wikipedia

# Drużyna SR W R P GF GA Diff Pts Pts/G W% ØGF ØGA
1. Tajwan 6 4 0 2 17 9 +8 12 2.00 67% 2.83 1.50
2. Korea Północna 6 3 1 2 6 3 +3 10 1.67 50% 1.00 0.50
3. Korea Południowa 3 2 1 0 7 3 +4 7 2.33 67% 2.33 1.00
4. Hongkong 3 2 0 1 7 5 +2 6 2.00 67% 2.33 1.67
5. Japonia 3 2 0 1 4 5 -1 6 2.00 67% 1.33 1.67
6. Mongolia 3 1 1 1 10 4 +6 4 1.33 33% 3.33 1.33
7. Makau 3 1 1 1 7 6 +1 4 1.33 33% 2.33 2.00
8. Korea Południowa W 1 1 0 0 9 0 +9 3 3.00 100% 9.00 0.00
9. Chiny 3 0 2 1 4 5 -1 2 0.67 0% 1.33 1.67
10. Guam 3 0 0 3 2 7 -5 0 0.00 0% 0.67 2.33
11. Chinese Taipei W 1 0 0 1 0 9 -9 0 0.00 0% 0.00 9.00
12. Northern Mariana Isl 3 0 0 3 2 19 -17 0 0.00 0% 0.67 6.33

-
Sezon Gier 1 x 2  ¦  1 2  ¦  Ponad 2.5 Poniżej 2.5 Ponad 1.5 Poniżej 1.5 Home Advantage
2022Sezon 6 66.7% 16.7% 16.7%  ¦  80.0% 20.0%  ¦  66.7% 33.3% 66.7% 33.3% 60.0%
2019Sezon 6 66.7% 0.0% 33.3%  ¦  66.7% 33.3%  ¦  33.3% 66.7% 66.7% 33.3% 33.3%
2019Qualification12 50.0% 25.0% 25.0%  ¦  66.7% 33.3%  ¦  58.3% 41.7% 91.7% 8.3% 33.3%
2017Qualification7 71.4% 0.0% 28.6%  ¦  71.4% 28.6%  ¦  42.9% 57.1% 85.7% 14.3% 42.9%
2017Group Stage12 33.3% 25.0% 41.7%  ¦  44.4% 55.6%  ¦  66.7% 33.3% 83.3% 16.7% -11.1%
2015Sezon 24 33.3% 25.0% 41.7%  ¦  44.4% 55.6%  ¦  45.8% 54.2% 75.0% 25.0% -11.1%
2013Group Stage19 42.1% 26.3% 31.6%  ¦  57.1% 42.9%  ¦  68.4% 31.6% 84.2% 15.8% 14.3%
2010Sezon 6 50.0% 16.7% 33.3%  ¦  60.0% 40.0%  ¦  66.7% 33.3% 83.3% 16.7% 20.0%
2008Sezon 6 16.7% 50.0% 33.3%  ¦  33.3% 66.7%  ¦  33.3% 66.7% 83.3% 16.7% -33.3%
2005Sezon 6 33.3% 50.0% 16.7%  ¦  66.7% 33.3%  ¦  16.7% 83.3% 50.0% 50.0% 33.3%
2003Sezon 6 66.7% 16.7% 16.7%  ¦  80.0% 20.0%  ¦  33.3% 66.7% 50.0% 50.0% 60.0%

Naciśnij na wybranej kolumnie w celu posortowania danych
Mouseover percentages (%) to see value odds

AnnaBet Power Ratings

Updated 2025-03-16 13:22:44
#Drużyna Rating
1. Japonia 1441
2. Korea Południowa W 1339
3. Korea Południowa 1326
4. Chinese Taipei W 1179
5. Chiny 1053
6. Korea Północna 1042
7. Hongkong 848
8. Tajwan 696
9. Guam 669
10. Mongolia 613
11. Makau 511
12. Northern Mariana Islands 427


Our ratings are currently calculated from games played after 1.1.2000

In football our ratings are similar to World Football Elo Ratings but we have tuned up the formula. For example when goal difference is low or game is tied and we have shots on goal statistics available for the game, we’ll then analyze the shots ratio to have some effect on the ratings. For example if a game was tied 1-1 but home team outshoot away team by 10-2 you might say the home team was the better team despite the result.

In ice hockey the ratings are similar but we have taken account the higher number of goals scored and “home” team (first mentioned team) line change advantage. For example if ice hockey game Sweden – Finland was played at Finland but Sweden had the line change advantage it is then taken account when calculating ratings.

Some examples how ratings are adjusted after each game

In the beginning each team has starting rating of 1000 points. After each game played the sum of points change is 0: if home team gets +20 points then away team gets -20 pts deducted. Amount is always based on the weight/importance of the tournament: in friendlies teams get much less points than in World Cup finals.

Two equal teams meet: winner gets some decent points and loser looses the same amount. Example +20 / -20.
Heavy favorite (much higher rating) wins by few goals: gets only few points because it was very expected result. Your points rises very slowly by beating much poorer teams than you. Example +3 / -3.
Heavy favorite ties a game: favorite loses small amount of points because it was expected that the team should win, the opponent get some points. Example -3 / +3 points.
Heavy favorite loses a game: loses lots of rating points, winner gets lots of points. Example -40 / +40.

Sample Winning Expectancies

Difference
in Ratings
Higher
Rated
Lower
Rated
0 0.500 0.500
10 0.514 0.486
20 0.529 0.471
30 0.543 0.457
40 0.557 0.443
50 0.571 0.429
60 0.585 0.415
70 0.599 0.401
80 0.613 0.387
90 0.627 0.373
100 0.640 0.360
110 0.653 0.347
120 0.666 0.334
130 0.679 0.321
140 0.691 0.309
150 0.703 0.297
160 0.715 0.285
170 0.727 0.273
180 0.738 0.262
190 0.749 0.251
200 0.760 0.240

Table by Eloratings.net

Why are Power Ratings better than winning percentage or league table?

Let’s say we have 2 teams whose performance we are analyzing: Finland and Sweden. Both teams have played 8 games and Finland has 6 wins and 2 losses, Sweden 5 wins and 3 losses. You might say Finland is the better team based on that info? What if Finland has won 4 games against poor teams, 2 against mediocre and lost 2 against better teams. Sweden on the other hand had win 3 games against better teams, 2 against mediocre and then 3 narrow losses against mediocre teams. Putting it that way, you might not believe Finland should be a favorite here after all. Would our Power Ratings tell you the exactly same thing:

Finland starting rating 1000:

1. game 4-0 win against poor team +10 pts (1010)
2. game 3-1 win against poor team +6 pts (1016)
3. game 0-2 loss against better team -10 pts (1006)
4. game 4-3 win against mediocre team +15 pts (1021)
5. game 5-3 win against mediocre team +18 pts (1039)
6. game 3-5 loss against better team -10 pts (1029)
7. game 2-0 win against poor team +6 pts (1035)
8. game 5-2 win against poor team +8 pts (1043)
Current rating 1043

Sweden starting rating 1000:

1. game 3-2 win against better team +25 pts (1025)
2. game 2-3 loss against mediocre team -12 pts (1013)
3. game 4-2 win against better team +30 pts (1043)
4. game 3-0 win against mediocre team +20 pts (1063)
5. game 3-5 loss against mediocre team -15 pts (1048)
6. game 3-4 loss against mediocre team -12 pts (1036)
7. game 4-1 win against better team +35 pts (1071)
8. game 3-1 win against mediocre team +16 pts (1087)
Current rating 1087

These are just rough examples for you to get the idea.

Finland vs Sweden Power Ratings: 1043 – 1087, ratings difference 44 and by looking at the table above you can see that this game should be about Finland 46% winning chance and Sweden 54%. Note that home advantage is usually about 100 points so 46%-54% would be only at neutral venue.

It is not always about how many games you have won but rather which teams and by how many goals that tells more about your true Power. But still remember these are only computer calculated estimations and does not take account real world situations like injuries, weather etc. Also note Power Ratings being much less accurate when teams have a big difference between number of games played and/or quality/diversity of tournaments where they have played.

For example in ice hockey USA and Canada plays only few friendly matches before major tournaments and European teams plays a lots of smaller tournaments - and also playing many games against couple of selected opponents only. Smaller tournaments and friendly matches makes of course smaller changes to Power Ratings than major tournaments but when you play a lot of smaller games it can add up.