AnnaBet.com
Bienvenidos Visitante   Entrada   Registrarse Por favor, registrarse o iniciar sesión.
Tienda Online    Facebook   Twitter   Contacte con nosotros

Hockey

           EE.UU. Rusia Finlandia Suecia
Internacional Alemania Australia Austria Belarús Canadá Dinamarca Eslovaquia Eslovenia España Francia Hungría Italia Kazajstán Letonia Noruega Polonia Reino Unido República Checa Suiza

  Amistosos internacionales 2019

Sábado 14. diciembre 2019
   
Amistosos internacionales2019 Cuotas 1x2
Francia    2 - 3    Belarús3.534.541.78
Japón    2 - 5    Corea del Sur3.754.231.75
Hungría    4 - 2    Ucrania1.435.155.01
   
Viernes 13. diciembre 2019
   
Russia II    2 - 8    Suiza
Hungría    2 - 5    Francia3.334.141.86
Eslovaquia    1 - 4    Noruega
Corea del Sur    4 - 2    Ucrania1.266.367.96
   
Jueves 12. diciembre 2019
   
Suiza    5 - 0    Noruega1.355.396.58
Hungría    1 - 2    Japón1.614.604.21
Russia II    3 - 2 pen Eslovaquia1.774.423.62
Belarús    6 - 5 ot Corea del Sur1.694.823.60
   
Miércoles 11. diciembre 2019
   
Ucrania    1 - 4    Belarús8.307.221.22
Francia    4 - 2    Japón1.494.735.08
   
Martes 10. diciembre 2019
   
Hungría    2 - 1 ot Corea del Sur2.243.932.73
   
Domingo 10. noviembre 2019
   
Estonia    3 - 1    Rumania2.404.402.30
Ucrania    2 - 3    Latvia B
   
Sábado 9. noviembre 2019
   
Estonia    3 - 2    Lituania3.455.541.67
Letonia    2 - 3    Belarús1.904.223.08
Noruega    4 - 2    Dinamarca1.645.024.17
Francia    3 - 0    Eslovenia
   
Viernes 8. noviembre 2019
   
Dinamarca    1 - 3    Austria1.644.583.99
Estonia    2 - 3    Ucrania1.774.533.42
Letonia    2 - 1 ot Francia1.884.303.11
Belarús    0 - 2    Eslovenia1.534.874.19
Rumania    3 - 5    Latvia B8.005.751.25
   
Jueves 7. noviembre 2019
   
Noruega    3 - 1    Austria1.475.114.98
Letonia    3 - 2 pen Eslovenia1.445.305.03
Francia    2 - 4    Belarús2.804.142.06
Lituania    2 - 1 ot Ucrania
   
Martes 7. mayo 2019
   
Austria    5 - 7    Canadá22.7614.111.04
Alemania    2 - 5    EE.UU.4.444.651.56
Eslovaquia    3 - 2 ot Noruega1.554.634.61
   
Domingo 5. mayo 2019
   
Austria    1 - 3    Dinamarca2.673.992.21
   
Sábado 4. mayo 2019
   
Suiza    2 - 0    Letonia1.604.384.29
Eslovaquia    6 - 1    Great Britain1.1010.2013.55
   
Viernes 3. mayo 2019
   
Suiza    4 - 1    Letonia1.684.344.00
Francia    6 - 2    Italia1.694.473.85
   
Sábado 27. abril 2019
   
Alemania    5 - 1    Austria1.425.075.54
Eslovaquia    0 - 2    República Checa2.844.092.08
Suiza    3 - 4 ot Francia1.197.229.79
Noruega    4 - 3 ot Dinamarca2.473.782.43
   
Viernes 26. abril 2019
   
Suiza    6 - 0    Francia1.345.556.54
Noruega    0 - 1    Dinamarca2.263.932.61
Eslovaquia    1 - 3    República Checa2.554.012.30
Finlandia    1 - 3    Suecia2.204.102.64
Kazajstán    3 - 0    Corea del Sur1.266.567.81
   
Jueves 25. abril 2019
   
Alemania    2 - 3    Austria1.266.397.81
Letonia    2 - 1 ot Rusia7.546.171.26
Finlandia    5 - 4    Suecia2.293.972.58
Eslovenia    3 - 2    Italia1.794.353.34

Más resultados


diciembre 2019
noviembre 2019
mayo 2019
abril 2019
febrero 2019

Alemania
Austria
Belarús
Belarus B
Canadá
Corea del Sur
Dinamarca
Dinamo Riga
EE.UU.
Eslovaquia
Eslovenia
Estonia
Finlandia
Francia
Great Britain
Hungría
Italia
Japón
Kazajstán
Latvia B
Letonia
Lituania
Noruega
Polonia
República Checa
Rumania
Rusia
Russia II
Suecia
Suiza
Ucrania


Seleccione una temporada


2025
2024
2023
2022
2021
2020
2019
2018
2017
2016-2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1995
1994
1993


-
Temporada Juegos 1 x 2  ¦  1 2  ¦  Más 5.5 Menos de 5.5 Más 4.5 Menos de 4.5 Ventaja en casa
2025Temporada regular14 78.6% 0.0% 21.4%  ¦  78.6% 21.4%  ¦  28.6% 71.4% 42.9% 57.1% 57.1%
2024Temporada regular89 41.6% 25.8% 32.6%  ¦  56.2% 43.8%  ¦  44.9% 55.1% 53.9% 46.1% 12.4%
2023Temporada regular111 41.4% 18.9% 39.6%  ¦  52.3% 47.7%  ¦  45.9% 54.1% 59.5% 40.5% 4.5%
2022Temporada regular79 44.3% 21.5% 34.2%  ¦  49.4% 50.6%  ¦  41.8% 58.2% 53.2% 46.8% -1.3%
2021Temporada regular88 51.1% 14.8% 34.1%  ¦  60.2% 39.8%  ¦  36.4% 63.6% 62.5% 37.5% 20.5%
2020Temporada regular13 53.8% 23.1% 23.1%  ¦  69.2% 30.8%  ¦  38.5% 61.5% 46.2% 53.8% 38.5%
2019Temporada regular113 42.5% 17.7% 39.8%  ¦  54.0% 46.0%  ¦  41.6% 58.4% 56.6% 43.4% 8.0%
2018Temporada regular113 46.0% 17.7% 36.3%  ¦  56.6% 43.4%  ¦  36.3% 63.7% 55.8% 44.2% 13.3%
2017Temporada regular42 28.6% 9.5% 61.9%  ¦  35.7% 64.3%  ¦  52.4% 47.6% 69.0% 31.0% -28.6%
2016-2017Temporada regular1 0.0% 0.0% 100.0%  ¦  0.0% 100.0%  ¦  0.0% 100.0% 100.0% 0.0% -100.0%
2016Temporada regular60 50.0% 11.7% 38.3%  ¦  58.3% 41.7%  ¦  51.7% 48.3% 65.0% 35.0% 16.7%
2015Temporada regular14 57.1% 14.3% 28.6%  ¦  71.4% 28.6%  ¦  42.9% 57.1% 64.3% 35.7% 42.9%
2014Temporada regular56 55.4% 12.5% 32.1%  ¦  62.5% 37.5%  ¦  39.3% 60.7% 51.8% 48.2% 25.0%
2013Temporada regular73 37.0% 21.9% 41.1%  ¦  43.8% 56.2%  ¦  43.8% 56.2% 54.8% 45.2% -12.3%
2012Temporada regular81 35.8% 27.2% 37.0%  ¦  46.3% 53.8%  ¦  29.6% 70.4% 42.0% 58.0% -7.5%
2011Temporada regular75 48.0% 24.0% 28.0%  ¦  61.3% 38.7%  ¦  48.0% 52.0% 66.7% 33.3% 22.7%
2010Temporada regular56 42.9% 16.1% 41.1%  ¦  49.1% 50.9%  ¦  39.3% 60.7% 57.1% 42.9% -1.9%
2009Temporada regular66 48.5% 19.7% 31.8%  ¦  59.4% 40.6%  ¦  54.5% 45.5% 66.7% 33.3% 18.8%
2008Temporada regular55 45.5% 18.2% 36.4%  ¦  51.9% 48.1%  ¦  40.0% 60.0% 56.4% 43.6% 3.8%
2007Temporada regular46 41.3% 17.4% 41.3%  ¦  52.3% 47.7%  ¦  45.7% 54.3% 63.0% 37.0% 4.5%
2006Temporada regular47 48.9% 10.6% 40.4%  ¦  54.8% 45.2%  ¦  42.6% 57.4% 48.9% 51.1% 9.5%
2005Temporada regular55 41.8% 20.0% 38.2%  ¦  52.3% 47.7%  ¦  23.6% 76.4% 40.0% 60.0% 4.5%
2004Temporada regular58 50.0% 24.1% 25.9%  ¦  65.2% 34.8%  ¦  36.2% 63.8% 44.8% 55.2% 30.4%
2003Temporada regular12 50.0% 33.3% 16.7%  ¦  75.0% 25.0%  ¦  25.0% 75.0% 50.0% 50.0% 50.0%
2002Temporada regular4 50.0% 25.0% 25.0%  ¦  66.7% 33.3%  ¦  75.0% 25.0% 75.0% 25.0% 33.3%
2001Temporada regular5 100.0% 0.0% 0.0%  ¦  100.0% 0.0%  ¦  40.0% 60.0% 40.0% 60.0% 100.0%
2000Temporada regular3 33.3% 33.3% 33.3%  ¦  50.0% 50.0%  ¦  66.7% 33.3% 66.7% 33.3% 0.0%
1999Temporada regular6 50.0% 33.3% 16.7%  ¦  75.0% 25.0%  ¦  66.7% 33.3% 66.7% 33.3% 50.0%
1998Temporada regular5 80.0% 20.0% 0.0%  ¦  100.0% 0.0%  ¦  40.0% 60.0% 60.0% 40.0% 100.0%
1995Temporada regular4 50.0% 25.0% 25.0%  ¦  66.7% 33.3%  ¦  50.0% 50.0% 100.0% 0.0% 33.3%
1994Temporada regular4 100.0% 0.0% 0.0%  ¦  100.0% 0.0%  ¦  75.0% 25.0% 75.0% 25.0% 100.0%
1993Temporada regular6 100.0% 0.0% 0.0%  ¦  100.0% 0.0%  ¦  83.3% 16.7% 83.3% 16.7% 100.0%

Haga clic en cualquier columna para ordenar la tabla
Porcentajes mouseover (%) para ver las probabilidades de valor

AnnaBet Power Ratings

Actualizado 2025-03-24 11:50:47
#Equipo Rating
1. República Checa 1566
2. Rusia 1559
3. Canadá 1557
4. EE.UU. 1529
5. Suecia 1526
6. Finlandia 1472
7. Suiza 1422
8. Eslovaquia 1351
9. Alemania 1325
10. Russia II 1288
11. Kazajstán 1271
12. Letonia 1242
13. Dinamarca 1177
14. Corea del Sur 1111
15. Noruega 1073
16. Dinamo Riga 1057
17. Eslovenia 1041
18. Great Britain 1041
19. Polonia 1035
20. Japón 1034
21. Ucrania 1019
22. Latvia B 1011
23. Austria 987
24. Francia 977
25. Hungría 966
26. Rumania 935
27. Belarús 933
28. Italia 908
29. Lituania 883
30. Belarus B 861
31. Estonia 772


Our ratings are currently calculated from games played after 1.1.2000

In football our ratings are similar to World Football Elo Ratings but we have tuned up the formula. For example when goal difference is low or game is tied and we have shots on goal statistics available for the game, we’ll then analyze the shots ratio to have some effect on the ratings. For example if a game was tied 1-1 but home team outshoot away team by 10-2 you might say the home team was the better team despite the result.

In ice hockey the ratings are similar but we have taken account the higher number of goals scored and “home” team (first mentioned team) line change advantage. For example if ice hockey game Sweden – Finland was played at Finland but Sweden had the line change advantage it is then taken account when calculating ratings.

Some examples how ratings are adjusted after each game

In the beginning each team has starting rating of 1000 points. After each game played the sum of points change is 0: if home team gets +20 points then away team gets -20 pts deducted. Amount is always based on the weight/importance of the tournament: in friendlies teams get much less points than in World Cup finals.

Two equal teams meet: winner gets some decent points and loser looses the same amount. Example +20 / -20.
Heavy favorite (much higher rating) wins by few goals: gets only few points because it was very expected result. Your points rises very slowly by beating much poorer teams than you. Example +3 / -3.
Heavy favorite ties a game: favorite loses small amount of points because it was expected that the team should win, the opponent get some points. Example -3 / +3 points.
Heavy favorite loses a game: loses lots of rating points, winner gets lots of points. Example -40 / +40.

Sample Winning Expectancies

Difference
in Ratings
Higher
Rated
Lower
Rated
0 0.500 0.500
10 0.514 0.486
20 0.529 0.471
30 0.543 0.457
40 0.557 0.443
50 0.571 0.429
60 0.585 0.415
70 0.599 0.401
80 0.613 0.387
90 0.627 0.373
100 0.640 0.360
110 0.653 0.347
120 0.666 0.334
130 0.679 0.321
140 0.691 0.309
150 0.703 0.297
160 0.715 0.285
170 0.727 0.273
180 0.738 0.262
190 0.749 0.251
200 0.760 0.240

Table by Eloratings.net

Why are Power Ratings better than winning percentage or league table?

Let’s say we have 2 teams whose performance we are analyzing: Finland and Sweden. Both teams have played 8 games and Finland has 6 wins and 2 losses, Sweden 5 wins and 3 losses. You might say Finland is the better team based on that info? What if Finland has won 4 games against poor teams, 2 against mediocre and lost 2 against better teams. Sweden on the other hand had win 3 games against better teams, 2 against mediocre and then 3 narrow losses against mediocre teams. Putting it that way, you might not believe Finland should be a favorite here after all. Would our Power Ratings tell you the exactly same thing:

Finland starting rating 1000:

1. game 4-0 win against poor team +10 pts (1010)
2. game 3-1 win against poor team +6 pts (1016)
3. game 0-2 loss against better team -10 pts (1006)
4. game 4-3 win against mediocre team +15 pts (1021)
5. game 5-3 win against mediocre team +18 pts (1039)
6. game 3-5 loss against better team -10 pts (1029)
7. game 2-0 win against poor team +6 pts (1035)
8. game 5-2 win against poor team +8 pts (1043)
Current rating 1043

Sweden starting rating 1000:

1. game 3-2 win against better team +25 pts (1025)
2. game 2-3 loss against mediocre team -12 pts (1013)
3. game 4-2 win against better team +30 pts (1043)
4. game 3-0 win against mediocre team +20 pts (1063)
5. game 3-5 loss against mediocre team -15 pts (1048)
6. game 3-4 loss against mediocre team -12 pts (1036)
7. game 4-1 win against better team +35 pts (1071)
8. game 3-1 win against mediocre team +16 pts (1087)
Current rating 1087

These are just rough examples for you to get the idea.

Finland vs Sweden Power Ratings: 1043 – 1087, ratings difference 44 and by looking at the table above you can see that this game should be about Finland 46% winning chance and Sweden 54%. Note that home advantage is usually about 100 points so 46%-54% would be only at neutral venue.

It is not always about how many games you have won but rather which teams and by how many goals that tells more about your true Power. But still remember these are only computer calculated estimations and does not take account real world situations like injuries, weather etc. Also note Power Ratings being much less accurate when teams have a big difference between number of games played and/or quality/diversity of tournaments where they have played.

For example in ice hockey USA and Canada plays only few friendly matches before major tournaments and European teams plays a lots of smaller tournaments - and also playing many games against couple of selected opponents only. Smaller tournaments and friendly matches makes of course smaller changes to Power Ratings than major tournaments but when you play a lot of smaller games it can add up.